

12-EPITEUPOLIN II, A NEO-CLERODANE DITERPENOID FROM *TEUCRIUM LAMIIFOLIUM*

IVA M. BONEVA, PETER Y. MALAKOV* and GEORGI Y. PAPANOV*

Department of Chemistry, Higher Institute of Agriculture V. Kolarov, 4000-Plovdiv, 12'D. Blagoev; *Department of Organic Chemistry, Plovdiv University, 24 Tsar Assen Street, 4000-Plovdiv, Bulgaria

(Received 27 March 1987)

Key Word Index—*Teucrimum lamiifolium*; Labiatae; diterpenoids; neo-clerodane derivatives; 12-epiteupolin II; teuscordinon; teuflin; montanin C; 19-acetylgnaphalin.

Abstract—From the aerial parts of *Teucrimum lamiifolium*; a new neo-clerodane diterpenoid, 12-epiteupolin II, has been isolated, together with the previously known diterpenes teuscordinon, teuflin, montanin C and 19-acetylgnaphalin.

The structure of 12-epiteupolin II (6 α -acetoxy-19-hydroxy-4 α , 18:15, 16-diepoxy-neo-clerodane-13 (16),14-dien-20,12R-olide) was established by chemical and spectroscopic means and by correlation with montanin C.

INTRODUCTION

In continuation of our studies on the diterpenes from *Teucrimum* species [1-9] we have now investigated *T. lamiifolium* D'Urv., a species which grows in southeastern Bulgaria. From the aerial parts of this plant we have isolated four previously known neo-clerodane diterpenoids, teuscordinon [10], teuflin [11], montanin C [8], 19-acetylgnaphalin [12], and a new diterpenoid, 12-epiteupolin II (1), whose structure and absolute configuration have been established on the basis of spectroscopic evidence, chemical transformations and correlation with montanin C (3).

RESULTS AND DISCUSSION

12-Epiteupolin II (1), $C_{22}H_{28}O_7$, had an IR spectrum which was consistent with the presence of a hydroxyl group (3630 cm^{-1}), a furan ring ($3140, 1505, 1600$ and 875 cm^{-1}), an ester group ($1740, 1240\text{ cm}^{-1}$) and a γ -lactone (1760 cm^{-1}). The ^1H NMR spectrum of the new diterpenoid (1, Table 1) revealed the existence of a secondary methyl group ($\delta 1.12, d, J = 6.5\text{ Hz}$), a β -substituted furan ring (two α -furan protons at $\delta 7.45$ and one β -furan proton at $\delta 6.37$), an α,α -disubstituted oxirane ring (two protons forming an AB system at 2.26 and 2.90 $J = 4\text{ Hz}$), and an acetoxyl group which must be placed at the C-6 position one proton doublet at $\delta 4.80, J_1 = 15, J_2 = 4\text{ Hz}$). The presence of a primary hydroxyl group in 1 was revealed by the ^1H NMR spectrum of its derivative obtained by treatment with chloroacetyl isocyanate. The resonance of the corresponding NH proton appeared at $\delta 8.43$ as a singlet, while the triplet at $4.06 (J = 12\text{ Hz})$ (H-19A, OH) was now a doublet at $4.42 (J = 13\text{ Hz})$ and the doublet of H-19B at 4.76 was paramagnetically shifted at $5.65 (J = 13\text{ Hz})$, thus confirming that the free alcohol group of 1 was a primary one. Moreover, the ^1H NMR spectrum of compound 1 (Table 1) was almost identical with that of teupolin II (2) a diterpenoid previously isolated from *T. polium* [2, 5]. In fact, the difference between the ^1H NMR spectra of 1 and 2 was only in the

chemical shift of the C-17 methyl protons, which appeared at a slightly lower field in 1 ($\delta 1.12$) than in 2 (0.99) (Table 1). On the other hand, comparison between the ^{13}C NMR spectra of 12-epiteupolin II (1) and teupolin II (2) (Table 2) showed a significant difference in the C-8 ($\Delta\delta + 2.8$) and C-10 ($\Delta\delta - 2.1$) chemical shifts.

These data clearly established that the structural difference between compounds 1 and 2 must be only the configuration of its C-12 centre [13, 14]. Moreover, the (12R)-configuration of 1 was also in agreement with NOE experiments, since irradiation of the Me-17 protons of 12-epiteupolin II caused a 7% NOE enhancement of the H-12 signal ($\delta 5.40$) [13, 15, 16].

Final proof that 12-epiteupolin II has the structure and absolute configuration depicted in formula 1 was obtained by acetic anhydride-pyridine treatment of compound 1. This gave a diacetyl derivative (3) identical in all respects [α_D , ^1H NMR, ^{13}C NMR and mmp] with natural montanin C [8, 13].

12-Epiteupolin II, montanin C [8, 13] and montanin G [16, 17] are the only neo-clerodane-20, 12-olides isolated from Bulgarian *Teucrimum* so far possessing the infrequent (12R)-configuration.

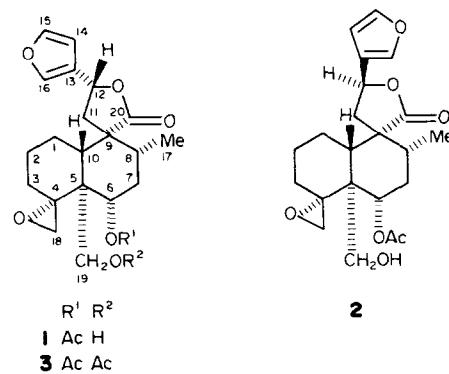


Table 1. ^1H NMR data of compounds **1** and **2** (250 MHz, CDCl_3 solution, TMS as int. standard)*

H	1	2	Δppm
3α	†	2.50 <i>m</i>	—
3β	‡	1.09 <i>m</i>	—
6β	4.80 <i>dd</i>	4.86 <i>dd</i>	—0.06
7β	1.59 <i>m</i>	1.61 <i>m</i>	—0.02
8β	‡	2.00 <i>m</i>	—
11A	2.35 <i>d</i>	2.38 <i>d</i> (8.2 Hz)	—
11B	2.15 <i>d</i>		—
12	5.40 <i>t</i>	5.35 <i>t</i>	—0.05
14	6.37 <i>m</i>	6.39 <i>m</i>	—0.02
15	7.45 <i>m</i>	7.44 <i>m</i>	+0.01
16			
17	1.12 <i>d</i>	0.99 <i>d</i>	+0.13
18A	2.90 <i>dd</i>	2.92 <i>dd</i>	—0.02
18B	2.26 <i>d</i>	2.23 <i>d</i>	+0.03
19A	4.06 <i>t</i> ‡	4.00 <i>t</i> ‡	+0.06
19B	4.76 <i>d</i>	4.71 <i>d</i>	+0.5
COMe	2.12 <i>s</i>	2.045 <i>s</i>	+0.08

J(Hz) **1,2**: 6 β ,7 β = 4; 6 β ,7 α = 15; 11A,11B = 14; 11A, 12 = 11B, 12 = 8; 17, 8 β = 6.5; 18A,18B = 4; 18 Δ ,3 α = 2; 19A,19B = 13; 19A,OH = 12.

*All these assignments have been confirmed by double resonance experiments.

†Overlapped signal.

‡Collapsed into a *d* after addition of D_2O .

EXPERIMENTAL

Mps are uncorr. ^1H NMR and ^{13}C NMR spectra were obtained in CDCl_3 soln with TMS as int. standard. Plant materials were collected in July 1984 near Malko Tirnovo, Bulgaria.

Extraction and isolation of the diterpenoids. Dried and finely powdered *T. lamiifolium* aerial parts (1.28 kg) were extracted with Me_2CO (30 l) at room temp. for a week. After evapn of the solvent, the residue was treated as in refs [18, 19]. The CHCl_3 extract (29 g) was chromatographed over a silica gel column (Merck, 7734, deactivated with 10% H_2O , 500 g) eluted with petrol, CH_2Cl_2 -petrol mixtures and pure CH_2Cl_2 . Elution with CH_2Cl_2 -petrol (2:8) gave teuflin (60 mg) and teuscordinon (40 mg); elution with CH_2Cl_2 gave 19-acetylgnaphalin (38 mg), montanin C (400 mg) and 12-epiteupolin II (**1**) (80 mg).

The previously known diterpenoids, teuflin, teuscordinon, 19-acetylgnaphalin and montanin C, were identified by their physical (mp, $[\alpha]_D$) and spectroscopic (IR, ^1H NMR, MS) data and by comparison with authentic samples (mmp, TLC).

*12-Epiteupolin II (**1**)* Mp 173–175° (from Me_2CO -petrol), $[\alpha]_D^{20} + 14$ (acetone; c0.33). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3630, 3140, 2995, 2860, 1760, 1740, 1505, 1420, 1380, 1350, 1240, 1180, 1145, 1030, 970, 920, 875, 850, 805, 655, 605. ^1H NMR and ^{13}C NMR (see Tables 1 and 2). EIMS (direct inlet) 75 eV; m/z (rel. int.): 404 [M]⁺ (18), 312 (38), 369 (22), 220 (28), 218 (28), 187 (30), 159 (21), 157 (19), 96 (98), 95 (88), 94 (20), 91 (40), 81 (48), 43 (100). (Found: C, 65.77; H, 7.12%. $\text{C}_{22}\text{H}_{28}\text{O}_7$ requires: C, 65.41; H, 7.01%).

*Acetylation of **1** to give **3**.* A soln of 25 mg of 12-epiteupolin II (**1**) in 0.5 ml of pyridine and 0.2 ml of Ac_2O was allowed to stand overnight at room temp. Usual work-up and recrystallization from EtOAc - Et_2O gave 22 mg of **3**, identical in all respects (mmp, $[\alpha]_D$, IR, ^1H NMR, ^{13}C NMR, MS, TLC) with natural montanin C.

Table 2. ^{13}C NMR chemical shifts of compounds **1** and **2** (CDCl_3 , TMS as int. standard).

C	1	2	$\Delta\delta$
1	22.1 <i>t</i>	22.8 <i>t</i>	—0.7
2	24.9 <i>t</i>	24.9 <i>t</i>	0.0
3	31.9 <i>t</i> * [†]	31.8 <i>t</i> * [†]	+0.1
4	65.5 <i>s</i>	65.2 <i>s</i>	+0.3
5	46.2 <i>s</i>	46.3 <i>s</i>	—0.1
6	73.9 <i>d</i>	73.7 <i>d</i>	+0.2
7	32.7 <i>t</i> * [†]	32.4 <i>t</i> * [†]	+0.3
8	40.7 <i>d</i>	37.9 <i>d</i>	+2.8
9	51.2 <i>s</i>	50.8 <i>s</i>	+0.4
10	50.7 <i>d</i>	52.8 <i>d</i>	—2.1
11	43.6 <i>t</i>	71.5 <i>d</i>	+0.3
12	71.4 <i>d</i>	125.1 <i>s</i>	+0.2
13	107.9 <i>d</i>	108.1 <i>d</i>	+0.2
14	144.2 <i>d</i>	144.2 <i>d</i>	0.0
15	139.1 <i>d</i>	139.6 <i>d</i>	—0.5
16	16.8 <i>q</i>	16.5 <i>q</i>	+0.3
17	47.4 <i>t</i>	47.3 <i>t</i>	+0.1
18	61.5 <i>t</i>	60.8 <i>t</i>	+0.7
19	176.1 <i>s</i>	176.3 <i>s</i>	—0.2
OAc	169.6 <i>s</i>	169.5 <i>s</i>	+0.1
	21.3 <i>q</i>	21.2 <i>q</i>	+0.1

*Assignments bearing the same sign may be reversed.

REFERENCES

1. Malakov, P. Y., Papanov, G. Y. and Mollov, N. M. (1978) *Tetrahedron Letters* 2025.
2. Malakov, P. Y., Papanov, G. Y. and Mollov, N. M. (1972) *Z. Naturforsch. B*, **34**, 1570.
3. Papanov, G. Y. and Malakov, P. Y. (1981) *Z. Naturforsch. B*, **36**, 112.
4. Malakov, P. Y., Papanov, G. Y. and Ziesche, J. (1982) *Phytochemistry* **21**, 2597.
5. Gacs-Baitz, E., Kajtar, M., Papanov, G. Y. and Malakov, P. Y. (1982) *Heterocycles*, **19**, 539.
6. Malakov, P. Y. and Papanov, G. Y. (1983) *Phytochemistry* **22**, 2791.
7. Papanov, G. Y. and Malakov, P. Y. (1985) *Phytochemistry* **24**, 297.
8. Malakov, P. Y., Papanov, G. Y., Mollov, N. M. and Spassov, S. L. (1978) *Z. Naturforsch. B*, **33**, 789.
9. Malakov, P. Y. and Papanov, G. Y. (1985) *Phytochemistry* **24**, 301.
10. Papanov, G. Y., Malakov, P. Y. and Bohlmann, F. (1981) *Phytochemistry*, **20**, 170.
11. Savona, G., Paternostro, M., Piozzi, F., Hanson, J. R., Hicheck, P. B. and Thomas, S. A. (1979) *J. Chem. Soc. Perkin Trans. I*, 1915.
12. Savona, G., Paternostro, M., Piozzi, F. and Rodriguez, B. (1979) *Tetrahedron Letters* 379.
13. Fayos, J., Fernandez-Gadea, F., Pascual, C., Perales, A., Piozzi, F., Rico, M., Rodriguez, B. and Savona, G. (1984) *J. Org. Chem.*, **49**, 1789.
14. Rodriguez, M., Barluenga, J., Savona, G., Piozzi, F., Servettaz, O. and Rodriguez, B. (1984) *Phytochemistry* **23**,

1465.

15. Pascual, C., Fernandez, P., Garcia-Alvarez, M. C., Hueso-Rodriguez, J. A., Rodriguez, B., Bruno, M., Paternostro, M., Piozzi, F. and Savona, G. (1986) *Phytochemistry* **25**, 715.
16. Gács-Baitz, E., Papanov, G. Y., Malakov, P. Y. and Szilágyi, L. (1987) *Phytochemistry* (in press).
17. Malakov, P. Y., Papanov, G. Y., Mollov, N. M. and Spassov, S. L. (1978) *Trav. Sci. Univ. Plovdiv (Chimie)* **16**, 215.

Phytochemistry, Vol. 27, No. 1, pp. 297-299, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
Pergamon Journals Ltd.

TRITERPENOID FROM *AGRIMONIA PILOSA*

ISAO KOUNO, NAOSUKE BABA, YUMIKO OHNI and NOBUSUKE KAWANO*

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi 1-14, 852 Nagasaki, Japan

(Received 31 March 1987)

Key Word Index—*Agrimonia pilosa*; Rosaceae; triterpenoid; 19 α -hydroxyursolic acid.

Abstract—Two new triterpenoids have been isolated as a methylester from the whole plant of *Agrimonia pilosa*, along with 2 α ,19 α -dihydroxyursolic acid (28-1) β -D-glucopyranoside from the roots of this plant. On the basis of chemical and spectral evidence, the structures were established as 1 β ,2 α ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid and 1 β ,2 β ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid.

INTRODUCTION

Agrimonia pilosa Ledeb is widely distributed in Asia. The chemical components of this plant have been extensively examined and agrimonolide [1], luteolin 7-O- β -D-glucoside, apigenin 7-O- β -D-glucoside [2, 3], agrimol A, B and D [4], agrimophol [5] and tannins [6, 7] were obtained. The antitumour activity of the extracts from the roots of this plant was also reported [8]. We report now on the constituents of *Agrimonia pilosa*.

RESULTS AND DISCUSSION

The methanol extract of the aerial parts of *A. pilosa* was fractioned by the usual procedure (Experimental) to afford a triterpenoid fraction. This was treated with diazomethane in methanol because of the difficulty of separation, and compounds **1** (45 mg) and **2** (112 mg) were isolated. The ^1H NMR spectrum of compound **1** $\text{C}_{31}\text{H}_{50}\text{O}_6$ (EIMS, *m/z* 518) showed the characteristic broad singlet at δ 2.57, together with the tertiary methyl [δ 0.68, 0.83, 1.02 (2Me), 1.22 (2Me)], the secondary methyl (0.94, *d*, *J* = 6.4 Hz), the ester methyl (3.60) and the olefinic (5.35, *t*, *J* = 3.4 Hz) protons, all of which suggested a 19 α -hydroxyurs-12-en type of triterpenoid. The olefinic carbon signals (δ 130.0, C-12; 137.3, C-13) in the ^{13}C NMR spectrum of **1** also indicated that **1** had an urs-12-en skeleton [9]. Although the hydroxy methine protons were not obvious in the ^1H NMR spectrum of **1**, an

acetate (**1a**) of **1** showed the signals of three acetoxy and three acetoxy methine groups. The latter of which exhibited two doublets (δ 4.79, *J* = 10.6 Hz; 4.88, *J* = 9.3 Hz) and a double doublet (δ 5.22, *J* = 10.6 and 9.3 Hz), and were assignable to C-1 (or 3), C-3 (or 1) and C-2, respectively. Three hydroxy methine carbons were also indicated in the ^{13}C NMR spectrum of **1** (δ 74.6, 74.9, 79.9). As the *J*-values of these signals indicated trans-diaxial correlated protons, the three acetoxy must be equatorial. It was concluded that compound **1** was 1 β ,2 α ,3 β ,19 α -tetrahydroxyurs-12-en-28-oate, and that the natural compound should be originally 1 β ,2 α ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid (**1b**).

The ^1H NMR spectrum of compound **2** ($\text{C}_{31}\text{H}_{50}\text{O}_6$; EIMS, *m/z* 518) showed a broad singlet at δ 2.59 similar to that of **1**. As the other signals of the ^1H NMR and the ^{13}C NMR spectra of **2** were quite similar to those of **1**, compound **2** was considered to possess the same skeleton as **1**. An acetate (**2a**) of **2** showed in the ^1H NMR spectrum the signals of three acetoxy and three acetoxy methine protons. These methine protons appeared at δ 4.70 (*d*, *J* = 3.7 Hz, C-1 or 3), 4.75 (*d*, *J* = 3.7 Hz, C-3 or 1) and 5.44 (*t*, *J* = 3.7 Hz, C-2) compared to those of **1**, and these coupling constants were accommodated on an axial-equatorial-axial correlation for these protons. These findings indicated **2** is 1 β ,2 β ,3 β ,19 α -tetrahydroxyurs-12-en-28-oate, and that the naturally occurring compound should be 1 β ,2 β ,3 β ,19 α -tetrahydroxyurs-12-en-28-oic acid (**2b**).

An acetonide reaction of **2** with acetone and *p*-toluene sulphonic acid yielded two compounds **2d** and **2e** (trace), although the same reaction for **1** gave only the starting

*Author to whom correspondence should be addressed.